CHROM. 11,525

Note

Dicarboxidine $[\gamma,\gamma'-(4,4'-diamino-3,3'-biphenylylenedioxy)dibutyric acid] di$ hydrochloride as a chromogen for the detection of N-tert.-butyloxycarbonylamino acids and peptides on thin-layer chromatograms

CARL M. SVAHN and JAN GYLLANDER

Research Department, Organic Chemistry, AB Kabi, S-112 87, Stockholm (Sweden) (Received October 9th, 1978)

The chlorine–o-tolidine method^{1,2} for the detection on thin-layer chromatograms of compounds that contain groups such as –CONH– which can be transformed into chloramines is frequently applied to N-protected amino acids and peptides. The carcinogenic properties of o-tolidine require, however, that this compound be replaced with safer alternatives. Such a compound, γ, γ' -(4,4'-diamino-3,3'-biphenylylenedioxydibutyric acid dihydrochloride (dicarboxidine), has recently been described³. We have now compared this compound with o-tolidine as chromogen for the detection of N-tert.-butyloxycarbonyl(BOC)-protected amino acids and peptides.

EXPERIMENTAL

The N-BOC-amino acids selected were derivatives of simple aliphatic amino acids lacking groups that could be easily detected by other techniques. N-BOC-Lalanine (1), N-BOC-L-glycine (2), N-BOC-L-isoleucine (3), N-BOC-L-proline (4). N-BOC-S-acetamidomethyl-L-cysteine (5), N-BOC-L-glutaminic acid γ -benzyl ester (6), N-BOC-L-glutamic acid γ -tert.-butyl ester (7) and pyroglutamic acid (8), were commercial products. p-Glu-Ser-Gly-NH₂ (9), H-Leu-Gly-Gly-Ala-Lys-Gln-Ala-Gly-Asp-Val-OH (10) and the tetradecapeptide somatostatine (H-Ala-Gly-Cys-Lys-Asn-Phe-Phe-Trp-Lys-Thr-Phe-Thr-Ser-Cys-OH) (11) were obtained from G. Westin-Sjödahl and R. Lundin (Recip Polypeptide Laboratory, AB Kabi, Stockholm, Sweden).

N-BOC-amino acids were dissolved in chloroform and diluted so that by applying 1 or 2 μ l to the chromatograms the amounts obtained in the spots were 20, 10, 1, 0.5, 0.2 and 0.1 μ g. Compound 8 and the peptides were dissolved in 0.2 N acetic acid and diluted so that by applying 1 or 5 μ l the amounts obtained in the spots were 5, 1, 0.5 and 0.1 μ g.

The eluents used with silica gel 60 F pre-coated TLC plates (Merck, Darmstadt, G.F.R.) were chloroform-acetic acid (9:1) for the N-BOC-amino acids an 1 ethyl acetate-pyridine-water-acetic acid (5:5:3:1) for 8 and the peptides. The *o*-t didine spray reagent was prepared according to Krebs *et al.*⁴, and the dicarboxidine spray reagent was prepared by dissolving 500 mg of dicarboxidine in a mixture of 30 m^{11} of water and 20 ml of acetic acid containing 1 g of potassium iodide. NOTES

The chromatograms were developed for a distance of 13 cm and air dried thoroughly (2 h for the pyridine-containing solvent) before the chlorination, which was performed as described by Krebs *et al.*⁴.

RESULTS

The R_F values and detectable amounts of N-BOC-amino acids and peptides are given in Table I.

TABLE I

Compound No.	R _F	Amount (µg) applied*						
		20	10	5	1	0.5	0.2	0.1
1	0.47	+, ×	+, ×		+, ×	+, ×	+, ×	+, ×
2	0.29	+, ×	$+, \times$		+, ×	+, ×	+, × .	+, ×
3	0.66	+, ×	+, ×		+, ×	(+), ×	-,(x)	- , -
4		-, -	-, -	-, -	-, -	-, - -	· - , -	-, -
5	0.05	+, ×	+, ×		$+, \times$	$+, \times$	$+, \times$	+, ×
6	0.56	+, ×	+, ×		+, ×	+,×	+, ×	-, ×
7	0.48	+, ×	+, ×		+, ×	+, ×	+, ×	—, ×
8	0.36			+, ×	+,×	+, ×		. -, ×
9	0.43			+, ×	+, ×	+, ×		(+), (×)
10	0.54			$+, \times$	+, ×	$+, \times$		(+), (×)
11	0.20			$+, \times$	+, ×	+, ×		(+), (×)

R_F VALUES AND DETECTABLE AMOUNTS

+ = Visible and (+) = barely visible with *o*-tolidine; \times = visible and (\times) = barely visible with dicarboxidine; - = not visible.

With o-tolidine, all of the tested compounds appeared as violet spots, sometimes with a yellow core at high concentrations (for 1 at 20 μ g, for 2 at 10 μ g, for 6 at 20 μ g, for the peptides at 5 μ g and for somatostatine at 1 μ g). With dicarboxidine, the N-BOCamino acids appeared as brownish violet spots with a red-brown core at high concentrations (for 1 at 20 μ g and 2 at 10 μ g). The peptides appeared as greenish violet spots with a brown core at high concentrations (5 μ g). Compound 4 was invisible at all concentrations, as expected.

CONCLUSION

The results indicate that the sensitivity of the chlorine-dicarboxidine spray reagent is as high as that of the chlorine-o-tolidine spray reagent. Dicarboxidine can therefore be recommended as a safer substitute for the carcinogenic o-tolidine.

REFERENCES

1 F. Reindel, W. Hoppe, Chem. Ber., 87 (1954) 1103.

- ² G. Pataki, *Techniques of Thin-layer Chromatography in Amino Acid and Peptide Chemistry*, Ann Arbor-Humphrey Science Publ., Ann Arbor, Mich., 1969, p. 107.
- 3 N. A. Jönsson, K. Gröningsson, B. Pavlu, J. Vessman and L. E. Westlund, Arzneim.-Forsch., 29 (1979) in press.
- ⁴ K. 3. Krebs, D. Heusser and H. Wimmer, in E. Stahl (Editor), *Dünnschicht-Chromatographie*, Sp. ager, Berlin, Göttingen, Heidelberg, 1967, p. 822.